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A new multi-block hybrid compact–WENO finite-difference method for the massively par-
allel computation of compressible flows is presented. In contrast to earlier methods, our
approach breaks the global dependence of compact methods by using explicit finite-differ-
ence methods at block interfaces and is fully conservative. The resulting method is fifth-
and sixth-order accurate for the convective and diffusive fluxes, respectively. The impact
of the explicit interface treatment on the stability and accuracy of the multi-block method
is quantified for the advection and diffusion equations. Numerical errors increase slightly
as the number of blocks is increased. It is also found that the maximum allowable time
steps increase with the number of blocks. The method demonstrates excellent scalability
on up to 1264 processors.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Compact finite-difference methods, see, e.g. [12,5], have been widely used to simulate fluid flows because of their favor-
able resolution characteristics. In compact finite-difference methods, derivatives f 0 of a discrete function f are computed by
solving a linear system Af 0 ¼ Bf where A and B are sparse, often banded or Toeplitz, matrices. In their original form, compact
finite-difference methods are centered approximations and therefore lack the dissipation necessary to capture shock waves.
Hybrid methods have been developed to address this deficiency by weighting a compact methods with a dissipative method
depending on local flow conditions. An early hybrid method was developed by Adams and Shariff [1] for the computation of
the interaction between a shock wave and a turbulent boundary layer. More recent examples include the methods of Pirozz-
oli [16], Ren et al. [18], Shen et al. [22], and Zhou et al. [35].

Despite the success of compact and hybrid methods in solving relatively simple problems, comparatively few applications
have been reported for large-scale simulations of complex problems. A fundamental obstacle that prevents compact and
hybrid methods from being applied to such problems is that the global nature of these methods incurs significant commu-
nication that makes efficient parallelization difficult. Prior work on the parallelization of compact methods is relatively lim-
ited. Sun and Moitra [25] developed the reduced parallel diagonal dominant (PDD) algorithm for the parallel inversion of
tridiagonal linear systems. The reduced PDD algorithm avoids the performance bottlenecks of earlier algorithms by solving
a perturbed linear system. The solution error induced by the perturbation was shown to be bounded. The parallel Thomas
algorithm (PTA) proposed by Povitsky [17] avoids approximations, but suffers from a trade-off between computation and
communication: either one obtains low idle time (good computational efficiency) and frequent sending of smaller messages
. All rights reserved.
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(poor communication efficiency) or high idle time (poor computational efficiency) and less frequent sending of larger mes-
sages (good communication efficiency). The only systematic comparison of the reduced PDD and PTA methods for flow sim-
ulations appears to have been carried by Ladeinde et al. [10]. They concluded that the reduced PDD method performed much
better than the PTA method and that the reduced PDD method produced large errors for fourth-order accurate approxima-
tions. One drawback of the study of Ladeinde et al. is that it was restricted to no more than 16 processors. Even so, typical
speed-ups of the PDD method on 16 processors were smaller than 50%. Other methods for the parallel solution of tridiagonal
systems have been developed, see, e.g. [14], but we are not aware of their use in flow simulations in the published literature.

The largest parallel computation to date involving compact finite-difference methods appears to have been carried out by
Cook et al. [2]. They presented a parallel solution method for variable-density incompressible flows on the IBM BlueGene/L
supercomputer. Using a transpose method, careful process-to-processor mapping, and tuning of critical code segments, Cook
et al. were able to get excellent weak scalability on up to 65,536 processors. Their approach is very communication inten-
sive—about 60% of the total time is due to communication—and the excellent performance may be critically dependent on
the sophisticated communication networks of the IBM BlueGene/L. For this reason, we are interested in alternative parall-
elization strategies that perform well on less sophisticated and more widely available parallel machines such as commodity
Linux clusters.

Based on the widespread use of parallel multi-block methods based on explicit finite-difference and finite-volume meth-
ods, see, e.g. [15], several authors have considered multi-block-type approaches with compact finite-difference methods.
Early work on multi-domain compact methods was performed by Gaitonde and Visbal [6], who considered overlapping do-
mains that were advanced independently using one-sided approximations near domain boundaries. In the overlap regions,
two solutions existed that were reconciled by imposing the solution from one domain onto the other and vice versa. Gait-
onde and Visbal found that this interface treatment could distort smooth flow structures unless higher-order filter formu-
lations were used in the overlap regions. The difference between the solutions in the overlap regions was determined to
be small. Ladeinde et al. [10] found the method to have good parallel scalability on up to 16 processors. This makes the ap-
proach of Gaitonde and Visbal attractive for subsonic flows, see, e.g. [34], where the lack of conservation is unlikely to be a
serious problem. To deal with supersonic flows, Sengupta et al. [21] symmetrized the matrix A�1B to reduce the biasing effect
of the one-sided stencils used at domain boundaries. They demonstrated the resulting method for a supersonic viscous flow
about a cone-cylinder configuration. The parallelization strategy was similar to that used by Gaitonde and Visbal in that it
used overlapping domains. The parallel performance of the method was only tested on up to six processors.

In the context of multi-domain methods, the approach of Costa and Don [3] also merits discussion. Costa and Don proposed a
multi-domain hybrid spectral–WENO (weighted non-oscillatory, see [9]) scheme for hyperbolic conservative laws. In their ap-
proach, a spectral method or a WENO scheme is used in a given domain depending on whether high gradients and discontinu-
ities are detected. This approach can capture flows with simple shock structures with high accuracy. However, if discontinuities
are scattered throughout the entire solution domain, such that at least one discontinuity is in each subdomain, the scheme of
Costa and Don reduces to the WENO scheme everywhere. At domain interfaces, they proposed spectral–spectral, spectral–
WENO, WENO–WENO treatments. This logical and binary switching complicates the implementation of their approach.

Based on this short review of prior work, we identify two key areas in which further progress is needed. First, the parallel
performance of compact methods should be improved. Second, an accurate and conservative block-interface treatment
should be developed to allow the computation of moving shock waves. Therefore, our goal is to develop a hybrid method
that is not only accurate enough for the computation of compressible turbulent flows but also exhibits good parallel perfor-
mance on large numbers of processors. Our approach is based on a multi-block method that uses explicit approximations at
block boundaries to break the global dependence of the underlying compact method. Because the primary focus of this arti-
cle is on the block-interface treatment and the parallel performance of the resulting method, we build on the existing hybrid
compact–WENO schemes of Pirozzoli [16] and Ren et al. [18]. The extension to turbulent flows will be addressed in future
work. One key question that must be addressed is the stability and accuracy of our proposed approach. As shown recently by
Larsson and Gustafsson [11], the stability of hybrid finite-difference methods is not guaranteed even on a single block.
Accordingly, a thorough stability study was carried out for our method.

The salient features of our method can be described in a two-dimensional setting. Although our method has been pro-
grammed and tested in three dimensions, we thus restrict attention to two dimensions for brevity. The rest of this article
is structured as follows. The governing equations are summarized in Section 2. The numerical method used in each block
is presented in Section 3. The interface treatment of the multi-block numerical method is discussed in Section 4. The impact
of the interface treatment on the stability and accuracy of the multi-block method is investigated in Section 5. Results for five
test cases are shown in Section 6. The parallel performance of the multi-block method is assessed in Section 7. Conclusions
are offered in Section 8.
2. Governing equations

The equations governing the viscous flow of a compressible fluid can be written in conservation form as
@u
@t
þ @f
@x
þ @g
@y
¼ @fd

@x
þ @gd

@y
; ð1Þ
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where the conserved variable vector u, the convective flux vectors f and g, and the diffusive flux vectors fd and gd are defined
as
u ¼

q

qu

qv

qE

2
66664

3
77775; f ¼

qu

qu2 þ p

quv

qHu

2
66664

3
77775; g ¼

qv

quv

qv2 þ p

qHv

2
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3
77775; fd ¼

0

sxx

sxy

ðs � vÞx � qx

2
66664

3
77775; gd ¼

0

sxy

syy

ðs � vÞy � qy

2
666664

3
777775; ð2Þ
where q; v ¼ fu; vgT ; p; E, and H ¼ Eþ p=q are the density, the velocity vector, the pressure, the total energy, and the total
enthalpy, respectively. The ideal-gas law is used,
p ¼ ðc� 1Þq E� 1
2
kvk2

� �
; ð3Þ
where c is the ratio of specific heats. Assuming a Newtonian fluid, the stress tensor s is
s ¼ l½rv þ ðrvÞT � � 2
3
lr � v I; ð4Þ
where l is the dynamic viscosity, I is the identity tensor, and the heat flux is given by Fourier’s law,
q ¼ �krT; ð5Þ
where k is the thermal conductivity. The dynamic viscosity is calculated from Sutherland’s law. The conductivity is obtained
from the Prandtl number Pr ¼ lCp=k, where Cp is the specific heat at constant pressure.

3. Single-block numerical method

In this section, we summarize the numerical method used within each block. For simplicity, we assume the grid spacing h
to be constant. Our method can be generalized to non-uniform and curvilinear grids in a straightforward manner using the
approaches of Gamet et al. [7] and Visbal and Gaitonde [31]. The semi-discrete equations developed in this section are inte-
grated in time using the fourth-order accurate Runge–Kutta method. For brevity, only the methods for computing the flux
derivatives @f=@x and @fd

=@x are described. The flux derivatives @g=@y and @gd=@y are treated analogously.

3.1. Discretization of convection terms

3.1.1. Hybrid compact–WENO scheme
Consider the semi-discrete conservative finite-difference scheme for the one-dimensional Euler equations on a grid with

spacing h ¼ xiþ1=2 � xi�1=2,
dui

dt
þ f̂ iþ1=2 � f̂ i�1=2

h
¼ 0; ð6Þ
where f̂ iþ1=2 and f̂ i�1=2 are the numerical fluxes at iþ 1=2 and i� 1=2. In the following, we assume for simplicity that the
eigenvalues of the Jacobian matrix A ¼ @f=@q are all positive. If the eigenvalues are all negative, analogous formulae apply.
If positive and negative eigenvalues exist, characteristic decomposition is used as described in the next section.

The fifth-order hybrid compact–WENO scheme of Pirozzoli [16] is adopted for the computation of convective fluxes. In
Pirozzoli’s method, the numerical flux f̂ can be written as
1
2
riþ1=2f̂ i�1=2 þ f̂ iþ1=2 þ

1
6
riþ1=2f̂ iþ3=2 ¼ riþ1=2fcompact

iþ1=2 þ ð1� riþ1=2Þf weno
iþ1=2 ; ð7Þ
where riþ1=2 is a weighting coefficient defined below, fcompact
iþ1=2 is given by
fcompact
iþ1=2 ¼ 1

18
f i�1 þ

19
18

f i þ
5
9

f iþ1; ð8Þ
and fweno
iþ1=2 is the numerical flux determined from the fifth-order WENO scheme of Jiang and Shu [9].

In Eq. (7), the coefficient riþ1=2 determines whether the compact or the WENO scheme is used locally. If riþ1=2 ¼ 1, Eq. (7)
reduces to the compact scheme; if riþ1=2 ¼ 0, Eq. (7) reduces to the WENO scheme. The value of riþ1=2 is determined by the
discontinuity sensor of Ren et al. [18],
riþ1=2 ¼min 1;
minðri; riþ1Þ

rc

� �
; ð9Þ
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where rc is a user-defined constant and ri is given by
ri ¼
2Df m

iþ1=2Df m
i�1=2

��� ���þ �
ðf m

iþ1=2Þ
2 þ ðf m

i�1=2Þ
2 þ �

; ð10Þ
where Df m
iþ1=2 ¼ f m

iþ1 � f m
i ; f m

i denotes the mth component of the flux vector f i, and � ¼ 0:9rcn
2=ð1� 0:9rcÞ is a small positive

number used to avoid division by zero with n a user-defined positive number. We use rc ¼ 0:3 and n ¼ 10�3 throughout.
Fourth-order explicit boundary closures are given by Pirozzoli [16] as
f̂1=2 ¼
1
4

f0 þ
13
12

f1 �
5

12
f2 þ

1
12

f3; ð11Þ

f̂Nþ1=2 ¼
25
12

fN �
23
12

fN�1 þ
13
12

fN�2 �
1
4

fN�3: ð12Þ
3.1.2. Characteristic decomposition and flux splitting
Characteristic decomposition and flux splitting, see [18], are used to extend the hybrid compact–WENO method described

in Section 3.1.1 to the case when positive and negative eigenvalues exist. The characteristic decomposition is performed
using the Jacobian matrix Aiþ1=2 ¼ @f iþ1=2=@q where f iþ1=2 ¼ 1

2 ðf i þ f iþ1Þ. With Liþ1=2 denoting the matrix of left eigenvectors
of Aiþ1=2, the convective fluxes and conservative variables can be projected to the eigenvector spaces wi and si,
wi ¼ Liþ1=2f i; ð13Þ
si ¼ Liþ1=2ui: ð14Þ
The flux splitting is performed in eigenvector space. In this paper, the global Lax–Friedrichs flux splitting, see, e.g. [28], is
used,
w�i ¼
1
2
ðwi � kmaxsiÞ; ð15Þ
where kmax ¼maxiki denotes the maximum eigenvalue in the computational domain.
With these definitions, Pirozzoli’s hybrid compact–WENO scheme can be extended to arbitrary eigenvalues as
1
2
rþiþ1=2ŵþi�1=2 þ ŵþiþ1=2 þ

1
6
rþiþ1=2ŵþiþ3=2 ¼ rþiþ1=2wþcompact

iþ1=2 þ ð1� rþiþ1=2Þwþweno
iþ1=2 ; ð16Þ

1
6
r�iþ1=2ŵ�i�1=2 þ ŵ�iþ1=2 þ

1
2
r�iþ1=2ŵ�iþ3=2 ¼ r�iþ1=2w�compact

iþ1=2 þ ð1� r�iþ1=2Þw�weno
iþ1=2 ; ð17Þ
where r�iþ1=2 are computed from wþ and w� using Eqs. (9) and (10). Before solving Eqs. (16) and (17), they should be pro-
jected back to physical space because the numerical fluxes in the eigenvector space w�iþ1=2 are defined locally, see [18].
The corresponding equations are
1
2
rþiþ1=2 f̂þi�1=2 þ f̂þiþ1=2 þ

1
6
rþiþ1=2 f̂þiþ3=2 ¼ rþiþ1=2fþcompact

iþ1=2 þ ð1� rþiþ1=2Þf
þweno
iþ1=2 ; ð18Þ

1
6
r�iþ1=2 f̂�i�1=2 þ f̂�iþ1=2 þ

1
2
r�iþ1=2 f̂�iþ3=2 ¼ r�iþ1=2f�compact

iþ1=2 þ ð1� r�iþ1=2Þf
�weno
iþ1=2 ; ð19Þ
where
f�compact
iþ1=2 ¼ L�1

iþ1=2w�compact
iþ1=2 ; ð20Þ

f�weno
iþ1=2 ¼ L�1

iþ1=2w� weno
iþ1=2 : ð21Þ
Eqs. (18) and (19), supplemented with boundary closures such as those given by Eqs. (11) and (12), can be written concisely
in matrix form as
Aþ f̂þ ¼ Bþfþ; ð22Þ
A� f̂� ¼ B�f�: ð23Þ
The numerical fluxes are obtained from the split numerical fluxes as f̂ ¼ f̂þ þ f̂� or
f̂ ¼ ðAþÞ�1Bþfþ þ ðA�Þ�1B�f�; ð24Þ
and therefore the semi-discrete finite-difference method given by Eq. (6) can be expressed as
du
dt
¼ �1

h
C½ðAþÞ�1Bþfþ þ ðA�Þ�1B�f��; ð25Þ
where C is the matrix representing the numerical-flux difference f̂ iþ1=2 � f̂ i�1=2. The tridiagonal matrices Aþ and A� are in-
verted using the Thomas algorithm.
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3.2. Discretization of diffusion terms

The diffusion terms are computed using the tridiagonal sixth-order compact method, see [12,5]. For example,
Fig. 1.
blocks.
1
3

@fd

@x

 !
i�1

þ @fd

@x

 !
i

þ 1
3

@fd

@x

 !
iþ1

¼ 14
9

fd
iþ1 � fd

i�1

2h
þ 1

9
fd

iþ2 � fd
i�2

4h
: ð26Þ
Near physical boundaries, the formulae derived by Gaitonde and Visbal [5] are used,
@fd

@x

 !
1

þ 5
@fd

@x

 !
2

¼ 1
h
�197

60
fd

1 �
5

12
fd

2 þ 5fd
3 �

5
3

fd
4 þ

5
12

fd
5 �

1
20

fd
6

� �
; ð27Þ

2
11

@fd

@x

 !
1

þ @fd

@x

 !
2

þ 2
11

@fd

@x

 !
3

¼ 1
h
�20

33
fd

1 �
35

132
fd

2 þ
34
33

fd
3 �

7
33

fd
4 þ

2
33

fd
5 �

1
132

fd
6

� �
: ð28Þ
Eqs. (26)–(28) can be expressed as
Adfd 0 ¼ Bdfd
: ð29Þ
The diffusive fluxes fd appearing on the right-hand side of Eq. (29) are computed from derivatives of the velocity components
and the temperature that are in turn calculated from Eq. (29).
4. Multi-block numerical method

As stated in the introduction, the main objective of this work is to improve the parallel performance of compact and hy-
brid compact–WENO methods. This requires that the global dependence of compact and hybrid methods be broken. To
achieve this objective, we use a multi-block approach in which non-compact, i.e., explicit, methods are used at the block
boundaries. As a result, it is not necessary to use parallel methods such as PTA or PDD for the solution of the tridiagonal sys-
tems given by Eqs. (22), (23) and (29).

Fig. 1 shows a schematic depiction of the block-interface treatment in the multi-block approach in one dimension. In our
approach, we restrict the use of the hybrid compact–WENO scheme described in Section 3 to the interior nodes in each block
and use a higher-order explicit method at the nodes shared by blocks. Compared to the work of Visbal and Gaitonde [29–31],
Visbal and Gordnier [32], and Gaitonde and Visbal [6] on multi-block compact methods, our approach does not use overlap-
ping blocks. The solution in the dummy nodes of each block is not computed, but received from neighboring blocks where
the dummy nodes coincide with interior nodes. Therefore, our approach is conservative and can deal with discontinuities
passing through block interfaces. Furthermore, compared to the approach of Costa and Don [3], our method does not require
logical switching, which simplifies the implementation.

The computation of the convective and diffusive terms at block interfaces is presented in the following. Similar to the
description of the single-block method, the presentation of the multi-block method is restricted to one dimension. The im-
pact of the explicit block-interface treatment on the stability and accuracy of the multi-block hybrid method is quantified in
Section 5.

The multi-block method described below was parallelized with the message-passing interface (MPI), see [8], to send/re-
ceive solution data to/from neighboring blocks. While the parallel implementation was designed carefully to allow overlap-
ping of computation and communication, no dedicated optimization has been carried out yet. The parallel performance of
the multi-block method is described in Section 7.
Schematic depiction of interface between two blocks, definition of dummy, shared, and interior nodes, and illustration of data transfer between
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4.1. Computation of convective fluxes

For the convective fluxes, the hybrid compact–WENO scheme described in Sections 3.1.1 and 3.1.2 is used in each block
on interior nodes. At shared nodes, the explicit WENO scheme or an explicit upstream central scheme is used, depending on
the values of the discontinuity sensor given by Eq. (9). Referring to Fig. 1, the convective flux f̂Nþ1=2 is computed as
f̂Nþ1=2 ¼ rNþ1=2fuc
Nþ1=2 þ ð1� rNþ1=2Þfweno

Nþ1=2; ð30Þ
where fuc
Nþ1=2 is given by the fifth-order accurate approximation of Shu [23],
fuc
Nþ1=2 ¼

1
60
ð2fN�2 � 13fN�1 þ 47fN þ 27fNþ1 � 3fNþ2Þ: ð31Þ
The flux f̂Nþ1=2 is computed similarly. Because an explicit scheme is used at the shared nodes, the computational stencils for
f̂N�1=2 and f̂Nþ1=2 in block 1 and f̂1=2 and f̂3=2 in block 2 are identical. Therefore the conservative variables and the fluxes com-
puted at the block interface are identical for both blocks, ensuring conservation.

One difficulty arises on multi-block grids in the determination of kmax as described in Section 3.1.2. If the global charac-
teristic decomposition is used across all blocks, the maximum eigenvalue must be computed through reduction and broad-
cast operations. Such collective operations are typically expensive compared to non-collective send/receive operations and
often do not scale well to large numbers of processors. This source of inefficiency can be avoided by using local characteristic
decompositions, see [23]. The characteristic decomposition described in Section 3.1.2 is restricted to the interior nodes of
each block. In other words, the characteristic decomposition in a given block is performed with the maximum eigenvalue
within that block and therefore Eq. (15) is replaced by
w�i ¼
1
2
ðwi � klocalsiÞ: ð32Þ
Furthermore, to preserve conservation at block interfaces, the maximum eigenvalue kmax in Eq. (15) is determined by the
local maximum over the computational stencil of the explicit scheme used at block interfaces.

4.2. Computation of diffusive fluxes

The diffusive fluxes at block interfaces are computed using the same procedure described in Section 4.1 for the convective
fluxes. With three dummy nodes used for the convective fluxes, a sixth-order explicit central difference for the first deriv-
atives in the diffusive fluxes can be used at the block interface, i.e.,
@fd

@x

 !
N

¼ 3
2

fd
Nþ1 � fd

N�1

2h
� 3

5
fd

Nþ2 � fd
N�2

4h
þ 1

10
fd

Nþ3 � fd
N�3

6h
: ð33Þ
To ensure that the diffusive terms are discretized in a conservative manner, the diffusive fluxes are transferred between
blocks prior to computing the derivatives using Eq. (33).

5. Stability and accuracy analysis

The hybrid compact–WENO scheme described in Sections 3 and 4 has been tested on several problems with single and
multiple blocks. The results for some of these problems are presented in Section 6. The tests indicate that the hybrid com-
pact–WENO scheme is stable, accurate, and robust. In this section, we present results from theoretical and numerical anal-
yses to quantify the impact of the block-interface treatments on the stability and accuracy of our method for the advection
and diffusion equations. Throughout the remainder of the paper, the number of blocks is denoted by Nb.

5.1. Advection equation

Consider the one-dimensional advection equation
@/
@t
þ a

@/
@x
¼ 0; ð34Þ
where /ðx; tÞ is a scalar variable and a > 0 is the constant advection speed. With the vector of unknowns denoted by
/ ¼ ð/1;/2; . . . ;/Np

ÞT , where Np is the total number of grid points in the solution domain (i.e., in all blocks), we can write
the semi-discrete form of Eq. (34) as
d/

dt
¼ � a

h
CA�1ðB/þ bÞ; ð35Þ
where h ¼ 1=ðNp � 1Þ; A and B are the coefficient matrices of the compact scheme in Eq. (22) for riþ1=2 ¼ 1 (i.e., without the
WENO scheme), b is a vector incorporating boundary conditions, and the matrix C represents the conservative approxima-
tion of the first derivative. The explicit approximation given by Eq. (31) is used at block interfaces.
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5.1.1. Stability analysis
An eigenvalue analysis states that the semi-discrete scheme given by Eq. (35) is stable if all eigenvalues of the matrix
D ¼ �CA�1B; ð36Þ
have non-positive real parts, and, when scaled by the timestep, fall within the stability region of the time-integration meth-
od. For a single block, Pirozzoli [16] found that his compact scheme with the boundary closures given by Eqs. (11) and (12)
has only negative eigenvalues. We are interested in investigating the stability properties of our multi-block compact method
for periodic and Dirichlet boundary conditions. With periodic boundary conditions, i.e., in the absence of physical boundary
conditions, we can isolate the impact of the block-interface treatment on the stability of the multi-block compact method.
Dirichlet boundary conditions represent the more physically realistic situation of inflow boundary conditions. With the
assumption that a > 0, we impose the Dirichlet boundary condition at the left boundary.

The eigenvalue spectra of D as a function of Nb and the boundary conditions are shown in Fig. 2 for Np ¼ 1001. For the
maximum value of Nb ¼ 200 considered, each block contains only four interior grid points. It can be seen that all eigenvalues
have negative real parts irrespective of the number of blocks and the boundary conditions, indicating that the underlying
multi-block scheme is linearly stable. Comparison of the eigenvalue spectra of the multi-block compact method with those
of the single-block compact and explicit methods shows that the multi-block scheme becomes increasingly stable with
increasing Nb (in the sense of the eigenvalues being closer to the origin) and therefore allowing a larger timestep. For exam-
ple, with a Dirichlet boundary condition, the maximum CFL number CFL ¼ aDt=h for stable computations is about 1.037 for
Nb ¼ 1. However, with Nb ¼ 100, the maximum CFL number for stable computations increases to 1.221. For periodic bound-
ary conditions, the variation of maximum CFL with Nb=Np (i.e., the inverse of the number of points per block) is shown in
Fig. 3(a).

It should be noted that these conclusions are dependent on the use of the fourth-order accurate Runge–Kutta method
used for time integration. With increasing Nb, the maximum extent of the eigenvalue spectra changes from the real to
the imaginary component in such a way as to take advantage of the shape of the stability region, see Fig. 4. Similar increases
of maximum allowable timesteps of the multi-block can thus be expected for other time-integration methods whose stabil-
ity regions are similar in shape to that of the fourth-order Runge–Kutta method, such as the third-order Adams–Bashforth
method, for example.

5.1.2. Accuracy study
To assess the impact of the block-interface treatment on the accuracy of the multi-block scheme, a grid-refinement study

is performed for a ¼ 1 on the domain�1 6 x 6 1 with periodic boundary conditions. The initial condition is /ðx;0Þ ¼ sinðpxÞ.
The explicit approximation given by Eq. (31) is used at block interfaces and the periodic boundaries. To ensure that time-
discretization errors do not dominate space discretization errors, the time step is determined from the relation
CFL ¼ 0:01N�1=4

p . Numerical errors are computed from the L1- and L2-norms of the difference between the computed and
exact solutions at t ¼ 0:25.

Fig. 5(a) shows the error behavior of the multi-block scheme as a function of the number of grid points for Nb ¼ 20. It can
be seen clearly that the multi-block scheme achieves the expected formal order of accuracy for a given number of blocks.
Fig. 5(b) shows the error behavior as a function of Nb for Np ¼ f101;801g. The results indicate that the block-interface
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treatment increases the errors somewhat, but the increase is relatively small; after an initial increase from Nb ¼ 1—2, the
errors increase very slowly with Nb for Np ¼ 101. For Np ¼ 801, the error is approximately independent of Nb.

5.2. Diffusion equation

Consider the one-dimensional diffusion equation
@/
@t
¼ a

@2/
@x2 ; ð37Þ
where /ðx; tÞ is a scalar variable and a is the constant diffusivity coefficient. With / ¼ ð/1;/2; . . . ;/Np
ÞT denoting the vector of

unknowns, the semi-discrete form of Eq. (37) can be written as
d/

dt
¼ a

h2 D/; ð38Þ
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where D is a matrix representing a discrete approximation to the second-derivative operator. Following the discussion in
Section 3.2, the matrix D can be expressed as
D ¼ ½ðAdÞ�1Bd�2: ð39Þ
where Ad and Bd are the matrices in Eq. (29), modified through the use of the sixth-order explicit central difference given by
Eq. (33) at block interfaces and periodic boundaries.

5.2.1. Stability analysis
The conditions for stability of Eq. (38) are identical to those stated in Section 5.1.1. The sixth-order compact finite-differ-

ence scheme with the boundary closures given by Eqs. (27) and (28) is known to be stable. As with the investigation of the
stability of the multi-block compact method for the advection equation, we are interested in the influence of periodic and
Dirichlet boundary conditions on the stability of the multi-block compact method for the diffusion equation.

Fig. 6 shows the real parts of the eigenvalues of the matrix D multiplied by the square of grid spacing as a function of Nb

and the boundary conditions for Np ¼ 1001. The real parts of the eigenvalues of the matrix D are seen to be negative irre-
spective of Nb, indicating that the multi-block scheme is stable for the diffusion terms. We note that the eigenvalue spectra
for Nb ¼ 10 follow very closely those for the single-block compact scheme. In other words, the impact of the block-interface
treatment is relatively small; even with Nb ¼ 200, the eigenvalues associated with the high-frequency modes are still closer
to the single-block compact method than to the single-block explicit method. Finally, it can be observed that relatively large
jumps exist in the eigenvalues for Nb ¼ 100 and 200. The reason for these jumps is currently unknown. It should be noted
that the eigenvalue spectra of single-block finite-difference differentiation matrices contain small jumps also, see [4]. These
are not visible in Fig. 6 due to the scale of the figure. We conclude that the interface treatment does not cause, but that it may
accentuate, the jumps. There appears to be no obvious relationship between the number of jumps and Nb and/or Np.

Similar to the advection equation, the multi-block compact method also allows larger time steps compared to the single-
block compact method for the one-dimensional diffusion equation. Fig. 3(b) shows that the maximum diffusion number
d ¼ aDt=h2 increases with Nb=Np.

In contrast to the behavior for the advection equation, the overall shape of the stability region of the time-integration
method is immaterial in determining the maximum timestep for the diffusion equation. Because the eigenvalues of the ma-
trix D are purely real, only the intercept of the stability region on the negative real axis matters. Thus the observed increase
in the maximum timestep for the diffusion equation with the present multi-block method is likely to hold for any other time-
integration method.

5.2.2. Accuracy analysis
The impact of the block-interface treatment on the accuracy of the multi-block compact scheme is assessed for the dif-

fusion equation by solving Eq. (37) for a ¼ 1 on the domain 0 6 x 6 1. The boundary conditions are /ð0; tÞ ¼ 0 and
/0ð1; tÞ ¼ 0 and the initial condition is /ðx;0Þ ¼ 1. The exact solution is
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/ðx; tÞ ¼ 4
p
X1
n¼0

1
2nþ 1

exp � nþ 1
2

� �2

p2t

" #
sin nþ 1

2

� �
px

� �
: ð40Þ
To ensure that time-discretization errors do not dominate spatial discretization errors, the time step is chosen according to
d ¼ 0:01N1=2

p . Numerical errors are computed from the L1- and L2-norms of the differences between the exact and computed
solutions at t ¼ 0:5.

Fig. 7(a) shows the behavior of the error norms as a function of Np for Nb ¼ 10. The results indicate that the multi-block
compact method for the diffusion equation is indeed sixth-order accurate. Fig. 7(b) presents the behavior of the error norms
as a function of Nb for Np ¼ f41;161g. As for the advection equation, the interface treatment leads to a slight increase in the
error norms, but the increase is small even for Nb ¼ 10, where only three interior grid points exist for the grid with Np ¼ 41.
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6. Results

In this section, results obtained with the multi-block method are presented for five well-known test cases. For each test
case, the impact of the number of grid points Np and/or the number of blocks Nb is assessed. The results presented below
complement those discussed in Section 5. Throughout, we use c ¼ 1:4 and Cp ¼ 1004:5 J=kg K.

6.1. Vortex convection

We consider the convection of a vortex to assess the accuracy of the method for smooth solutions of the Euler equations.
The initial conditions are a uniform freestream aligned with the x-coordinate direction of density q1, velocity u1, and pres-
sure p1, modified by a vortex,
L
er

ro
r

no
rm

∞

uðx; yÞ ¼ u1 �
Cðy� y0Þ

r2
c

exp �1
2
s2

� �
; ð41Þ

vðx; yÞ ¼ �Cðx� x0Þ
r2

c
exp �1

2
s2

� �
; ð42Þ

pðx; yÞ ¼ p1 �
qC2

2r2
c

expð�s2Þ; ð43Þ
for s ¼ r=rc 6 1, where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x0Þ2 þ ðy� y0Þ

2
q

; rc is the vortex-core radius, ðx0; y0Þ are the coordinates of the initial loca-
tion of the vortex, and C is a dimensional constant. This constant is chosen such that the non-dimensional vortex-strength
parameter C=ðu1rcÞ ¼ 0:2. The vortex-core radius is rc ¼ 0:2. The freestream Mach number M1 ¼ u1=c1, where c1 is the
freestream speed of sound, is chosen to be 0.1. A computational domain of ½0;4� � ½0;4� is used. The initial location of the
vortex is ðx0; y0Þ ¼ ð2;2Þ. Periodic conditions are set on all boundaries. A CFL number of 0:04 is used for all computations.
(This value has been verified to be small enough to lead to negligible time-discretization errors.) Because of the low strength
of the vortex and the low freestream Mach number, the vortex is simply convected with the flow. Therefore, errors can be
computed by taking the initial condition as the exact solution, and the order of accuracy can be determined through a grid-
refinement study. Uniform grids with 51� 51 up to 801� 801 points are used. On the coarsest grid, the grid spacing relative
to the vortex-core radius is h=rc ¼ 0:4. The errors presented below are computed at the time when the vortex has returned to
its initial location, i.e., when it has convected a distance of 8rc . The domain size, grid resolutions, and initial and boundary
conditions are identical to those used by Visbal and Gaitonde [29] to allow a direct comparison. For multi-block computa-
tions, the computational domain is partitioned only in the streamwise direction.

Fig. 8(a) shows the behavior of the L1-norm of the error in the computed v-velocity along y ¼ 2 as a function of Np for
Nb ¼ 4. The results indicate the multi-block method attains fifth-order accuracy for smooth problems. Fig. 8(a) also shows
a comparison between the errors incurred by the present method and the fourth- (CD4F8) and sixth-order (CD6F10) accurate
centered methods with filtering of Visbal and Gaitonde [29]. The errors of the present method are comparable to those of
CD4F8 (Visbal & Gaitonde 1999)
CD6F10 (Visbal & Gaitonde 1999)
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Visbal and Gaitonde’s fourth-order method on the coarse grids, but become lower on finer grids. Fig. 8(b) shows the behav-
iors of the L1- and L2-norms of the error in the v-velocity as a function of Nb for Np ¼ f101; 401g. It can be seen that the error
norms are nearly independent of Nb. The vorticity contours as a function of Nb are presented in Fig. 9. The contour lines are
indistinguishable to plotting accuracy and the vorticity extrema are identical to three significant digits, indicating that the
block-interface treatment has only a minor impact on smooth solutions. These observations corroborate the findings of Sec-
tion 5. (Determining the efficiency, i.e., the accuracy relative to the required computing time, of our and Visbal and Gait-
onde’s methods would require dedicated optimization and timing and was not the objective of this test problem.)

6.2. Shu–Osher problem

The classical one-dimensional problem of Shu and Osher [24] is used to assess the impact of the interface treatment on
moving shock waves. The initial condition
y
y

Fig. 9.
to three
ðq;u;pÞ ¼
ð3:857143;2:629369;10:333333Þ if x < 1;
ð1þ 0:2 sin½5ðx� 1Þ�;0;1Þ if x P 1;

�
ð44Þ
represents a shock wave moving into a stagnant fluid with a sinusoidal density variation. Numerical solutions of the Euler
equations with the multi-block hybrid compact–WENO method are computed on the domain�5 6 x 6 5 with 201 uniformly
distributed grid points and CFL ¼ 0:3. Because of the absence of an analytical solution, we follow other authors in using a
numerical solution obtained with the pure WENO scheme on a (single-block) uniform grid with Np ¼ 2001 as a reference
solution.

The numerical solutions obtained for various values of Nb are compared with the reference solution for the density at
t ¼ 1:8 in Fig. 10. Two main observations can be made. First, the multi-block hybrid compact–WENO method performs better
than the pure WENO method for the same number of grid points. Second, the number of blocks affects the solution in the
highly oscillatory region only immediately behind the shock, and even there the influence is minor.

6.3. Taylor–Sedov blast wave

To assess the ability of the method to capture strong shock waves, we solve the evolution of a blast wave generated by a
point source of energy. A similarity solution valid for large times was derived independently by Taylor [26] and Sedov [20]
under the assumption that the blast wave propagates into uniform surroundings. The Taylor–Sedov blast wave is a challeng-
ing test because of the strength of the shock wave, the use of a Cartesian grid that introduces a directional bias into what is a
one-dimensional problem in the radial coordinate, and the need to represent the point source by a sufficient number of grid
points. Representing the point source as a sphere of radius R0 at the origin, the initial conditions are chosen to be
ðq1;u1; p1Þ ¼ ð1;0;10�6Þ for r P R0 and ðq0;u0; p0Þ ¼ ð1;0; ðc� 1ÞqE0=V0Þ for r < R0, where r is the radial position from
the origin, E0 is the energy contained in the point source, and V0 ¼ 4

3 pR3
0 is the volume of the energy source at the origin.

In the results presented below, R0 ¼ 0:01 and E0 ¼ 1:0. The computational domain is ½�0:4;0:4� � ½�0:4;0:4�. Grid resolutions
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of Np ¼ f241� 241;481� 481;961� 961g are used with Nb ¼ f16;64;256g, respectively. The numerical solutions for the
density at t ¼ 0:08 along y ¼ 0 are compared to the similarity solution in Fig. 11(a). It can be seen that the numerical solu-
tions agree well with the similarity solution with increasing grid refinement. To assess the impact of the Cartesian grid on the
solution, Fig. 11(b) compares the density along y ¼ 0 and y ¼ x. The anisotropy in the numerical solutions reduces with
increasing grid resolution. The sensitivity to grid resolution is well known for Cartesian grids. The results indicate that
the block-interface treatment is stable and accurate for strong shock waves.

6.4. Shock–vortex interaction

We next consider a shock–vortex interaction problem, see [23], in which a moving vortex superimposed on an inviscid
flow with Mach number 1.1 hits a stationary normal shock. The initial conditions are
ðq; u;v ;pÞ ¼
ð1;1:1 ffiffifficp ;0;1Þ if x < 1;
ð1:169;1:1134;0;1:245Þ if x P 1;

�
ð45Þ
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modified by the velocity, temperature, and entropy perturbations induced by the vortex for r 6 rc ,
u0ðr; hÞ ¼ �s exp½að1� s2Þ� sin h; ð46Þ
v 0ðr; hÞ ¼ ��s exp½að1� s2Þ� cos h; ð47Þ

T 0ðr; hÞ ¼ c� 1
c

�2

4a
exp½2að1� s2Þ�; ð48Þ

s0ðr; hÞ ¼ 0; ð49Þ
where � ¼ 0:3; s ¼ r=rc; a ¼ 0:204; h ¼ tan�1ðy=xÞ; r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x0Þ2 þ ðy� y0Þ

2
q

; rc ¼ 0:05, and ðx0; y0Þ are the coordinates of
the initial location of the vortex. We choose a computational domain of ½0;2� � ½0;1� with 401� 101 uniformly distributed
grid points. The initial location of the vortex is ðx0; y0Þ ¼ ð0:75;0:5Þ. Periodic boundary conditions are used at the top and
bottom domain boundaries. A CFL number of 0.3 is used for all computations.

Figs. 12 and 13 show the pressure contours at t ¼ 0:2 and 0.35 as a function of Nb. It can be seen that the overall solutions
are visually indistinguishable from each other. Minor differences are restricted to the immediate vicinity of the straight part
of the shock wave at t ¼ 0:2. The pressure extrema listed in the captions are very similar to those reported by [13] using a
characteristic filtering method on a single block. The pressure variation through the vortex center at t ¼ 0:35 is plotted in
Fig. 14. These observations indicate that the explicit treatment of the block interfaces has only a minimal impact on the
solution.

6.5. Compressible mixing layer

As the final test case we consider the compressible mixing layer, in which two streams with equal but opposite velocities
excite the absolute instability of the shear layer developing between them. The objective is to establish that the multi-block
compact–WENO method accurately computes viscous flows at relatively low Reynolds number.

The initial mean velocity field is
uðyÞ ¼ 1
2
ðu1 � u2Þ tanhð2yÞ; ð50Þ

v ¼ 0; ð51Þ
where u1 > 0 and u2 ¼ �u1 are the freestream velocities. The initial mean velocity field is perturbed by a single mode, see
[33],
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Mc ¼
u1 � u2

c1 þ c2
: ð55Þ
The extent of the mixing layer is characterized through its vorticity thickness, defined as
dxðtÞ ¼
ju1 � u2j

maxx;yj@u=@yj : ð56Þ
The initial vorticity thickness is used to define a Reynolds number as
Re ¼ q1u1dxð0Þ
l1

; ð57Þ
where l1 is the dynamic viscosity associated with the freestream of velocity u1. The dynamic viscosity is assumed to be given
by Sutherland’s law with reference viscosity l1 and reference temperature T1 ¼ c2

1=ðc� 1ÞCp. Here, we take Mc ¼ 0:4; Re ¼
400; a ¼ 0:05; b ¼

ffiffiffiffiffiffi
10
p

, and Pr ¼ 1.
The results presented below were obtained for a computational domain of ½0;16:12� � ½�30;30�. Periodic boundary

conditions were specified in the streamwise direction. The non-reflecting slip boundary conditions of Thompson [27] were
imposed at the top and bottom boundaries. A refinement study with three uniform grids with 101� 257;201� 513, and
401� 1025 points was carried out. The computational domain was decomposed into 16 equal-sized blocks (4 blocks in each
direction). A CFL number of 0.3 was used for all computations.

Fig. 15 shows the vorticity contours of the mixing layer at the dimensionless times t� ¼ u1t=dxð0Þ ¼ f0;5;10;15g. The
vortex pairing generated by the instability of the mixing layer can be seen clearly. Fig. 16 shows the normalized vorticity
thickness as a function of non-dimensional time and grid resolution. The grid-refinement study indicates that the solution
obtained with the multi-block compact method is converged. Also shown in Fig. 16 is a comparison with the result of
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Sandham and Reynolds [19]. Sandham and Reynolds used a sixth-order accurate compact scheme in the streamwise direc-
tion and a spectral scheme in cross-stream-wise direction on a 61� 81 grid clustered around y ¼ 0. Due to the use of a spec-
tral method and grid clustering, their grid resolution is necessarily lower. We can thus use the solution of Sandham and
Reynolds as a highly accurate reference solution. It can be seen from Fig. 16 that the solutions computed with the present
multi-block compact–WENO method compare very well with the solution of Sandham and Reynolds.

7. Parallel performance

The parallel performance of the multi-block hybrid compact–WENO method is assessed for the compressible mixing-
layer problem described in Section 6.5. The number of grid points used depends on the type of performance study as de-
scribed below. Irrespective of the type of study, the computational domain is split only in the x-coordinate direction, i.e.,
as depicted in Figs. 12(b) and 13(b). Together with the periodic boundary conditions used in the streamwise direction, this
results in perfect load balancing in the sense that not only is the number of grid points per block identical, but also the num-
ber of variables to be sent and received per block. The results were obtained on a Linux cluster with AMD Opteron processors
rated at 2.2 GHz and with a memory of at least 4 Gb.

7.1. Strong scalability

Strong scalability assesses the parallel performance of a method as an increasing number of processors is used to solve a
problem of fixed overall size. The results from strong scalability studies are relevant when additional processors are used to
reduce the run-time. As the number of processors increases, the number of points assigned to each processor decreases and
therefore the communication cost increases relative to the cost of computation, leading to reduced performance. In our
study, we use grids with overall sizes of 2561� 101 and 5121� 101 points and measure the performance through the
speed-up on p processors, Sp ¼ T1=Tp, where T1 is the time consumed on a single processor and Tp is the time consumed
on p processors. The results presented in Fig. 17(a) indicate that speed-ups of about 185 and 205 are obtained with the coarse
and fine grids on 256 processors, respectively. The corresponding speed-ups on 512 processors are 190 and 310. Considering
that no (five) and five (15) interior points that are not sent or received exist in each block of the coarse (fine) grid on 256 and
512 processors, respectively, this represents excellent performance.

7.2. Weak scalability

Weak scalability studies assess the parallel performance of a method in terms of solving a problem of fixed size per pro-
cessor as the number of processors increases. The results from such studies are relevant when additional processors are used
to increase the overall resolution with the goal of keeping the total run-time constant. In our study, we used grids with
11� 101 and 21� 101 points per processor on up to 1264 processors. This leaves only nine and 17 interior grid points
per block in the x-coordinate direction, respectively. Despite this unfavorable ratio of communication to computation, it
can seen from Fig. 17(b) that the efficiency Ep ¼ T1=Tp, is about 95% on 256 processors and about 88% for 1264 processors



for the grid with 11� 101 points per processor. For the grid with 21� 101 points per processor, the efficiency is nearly con-
stant at 97% up to 1264 processors. These results are substantially better than those reported in the literature for other par-
allel compact approaches executed on commodity clusters. Because the code has not yet undergone dedicated optimization,
it is possible that the parallel performance can be improved further.
8. Conclusions

The main contribution of this paper is the development and assessment of a new multi-block hybrid compact–WENO fi-
nite-difference method for the massively parallel simulation of compressible flows. In contrast to earlier efforts at develop-
ing parallel compact or hybrid methods, our approach avoids the global dependence of compact methods that adversely
affects parallel performance. Instead, the present approach breaks the global dependence through the use of explicit fi-
nite-difference approximations at block interfaces. The resulting multi-block method is fifth- and sixth-order accurate for
the convective and diffusive fluxes, respectively. A dedicated analysis of the multi-block method for the advection and dif-
fusion equations quantified the impact of the block-interface treatment on stability and accuracy. It was found that the sta-
bility of the multi-block method actually improves with increasing number of blocks if the fourth-order accurate Runge–
Kutta method is used for time integration. Increasing the number of blocks while keeping the number of grid points constant
leads to a slight loss in accuracy. The parallel performance of the method was assessed through strong and weak scalability
studies. The multi-block hybrid method attained an efficiency of 88% on 1264 processors of a commodity cluster at the first
attempt without dedicated code tuning. This level of performance is much higher than that typically obtained with other
strategies for the parallelization of compact methods. Therefore, the new method proposed here may make problems that
require massive parallel computing power more amenable to compact and hybrid methods.

Being based on blocks, the new method is also suitable for the computations of flows in or around complex geometries.
Overlapping blocks, which are sometimes advantageous for geometries involving moving boundaries, can in principle also be
treated. For example, data in the dummy points could be obtained by interpolating rather than simply copying from neigh-
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